

## **Course Description**

## NMT2779C | Multi-Modalities and Cross-Sectional Anatomy | 2.00 credits

This course educates the student upon proper recognition and interpretation of cross-sectional anatomy. The student will also compare and analyze images from complementary modalities. It is crucial for the nuclear medicine technologist to understand three-dimensional imaging in order to enhance patient care and be an asset to the facility. Prerequisites: NMT2130C, NMT2723C, NMT2814C; Corequisites: NMT2733C, NMT2824C

## Course Competencies:

**Competency 1:** The student will be able to demonstrate Positron Emission Tomography (PET) radiation safety concerns by:

- 1. Examining the concepts of personal protection/monitoring:
  - a. As low as (is) reasonably achievable (ALARA)
  - b. Personal protection
  - c. Control room
  - d. Distance
  - e. Dose calibrator
  - f. Patient dose
  - g. Patient holding room
  - h. Scanning room
  - i. Shielding
  - j. Time
  - k. Waiting room
  - I. Waste c. Personal monitoring devices (body/extremity)
  - m. Examining the concepts of area/facilities monitoring
  - n. Survey Equipment
  - o. Radiation surveys
  - p. Regulatory requirements
- 2. Examining the concepts of packaging and storing radioactive materials, inspection of incoming/outgoing materials, and storing radiopharmaceuticals
- 3. Analyzing the significance of keeping records, including those involving shipping, receipt, administration, storage, the disposal of radioactive materials, and radiation surveys
- 4. Indicating the implications of radioactive decontamination to the area and personnel
- 5. Summarizing the significance and concerns regarding the disposal of radioactive waste, its release to the environment, the concept of decay to storage, incineration and the transfer to authorized recipients

Competency 2: The student will be able to demonstrate PET/Computed Tomography (CT) scans by:

- 1. Examining Scintillation detector systems: Principles of scintillation detection, Properties of detector materials:
  - a. Material types
  - b. Atomic number
  - c. Delay timed
  - d. Conversion efficiency-PET detector materials:
    - Sodium iodide (Nal)
    - Bismuth germinate (BGO)
    - Lutetium oxyorthosilicate (LSO)
    - Gadolinium oxy orthosilicate (GSO)
- 2. Examining System types: Terminology:
  - a. Aperture size-Field of view-Overlap-Bed positions
  - b. Dedicated PET
  - c. Full ring tomography

- d. Partial ring tomography
- e. Panel detector
- f. PET-CT combined
- g. Gamma PET camera
- 3. Identifying anatomy and physiology:
  - a. Listing indications
  - b. Listing contrast media and recommended volumes
  - c. Discussing patient preparation
- 4. Examining Quality Control procedures: Normalization-Blank Scan-Gains (singles)-Cross-calibration:
  - a. System performance
  - b. Scatter fraction
  - c. Noise equivalent count rated
  - d. National Electrical Manufacturers Association (NEMA) standards and testing
- 5. Examining CT System Principles, Operations, and Components:
  - a. Tube
  - b. kVp
  - c. mA
  - d. Warm-up procedures
  - e. Generator and Transformers
  - f. Detector (single and multi-row) and DAS
  - g. Collimation
  - h. Computer and Array Processor
  - i. Equipment Maintenance
- 6. Analyzing image formation and reconstruction

**Competency 3:** The student will be able to demonstrate PET/Magnetic Resonance Imaging (MRI) scans by:

- 1. Examining Scintillation detector systems: Principles of scintillation detection, Properties of detector Materials:
  - a. Material types
  - b. Atomic number
  - c. Delay timed
  - d. Conversion efficiency-PET detector materials:
    - Sodium iodide (Nal)
    - Bismuth germinate (BGO)
    - Lutetium oxyorthosilicate (LSO)
    - Gadolinium oxyorthosilicate (GSO)
- 2. Discussing and examining System types
- 3. Examining MRI Instrumentation-Magnet:
  - a. Types of magnets permanent, resistive, and superconductive
  - b. Magnetic and RF fields
  - c. Gradients
  - d. Cross section of a magnet
  - e. Transmit and receive:
  - f. Coils
  - g. Receive only
  - h. Transmit/receive
  - i. Linear
  - j. Quadrature
  - k. Phased array
  - I. Multichannel
  - m. Shielding and shimming -both active and passive
- 4. Examining the following terms:
  - a. Hertz (HZ), megahertz (MHZ)
  - b. Tesla (T), gauss (g)
  - c. Electromagnetic spectrum

- 5. Analyzing computer and digital imaging
- 6. Examining MRI obtaining the MR Signal:
  - a. Properties of hydrogen and molecular structure
  - b. Precession
  - c. Net magnetization
  - d. Angular momentum
  - e. Magnetic domain
  - f. Vector
  - g. Resonance
  - h. Larmour equation
  - i. Faraday's laws
  - j. RF pulses
  - k. Spatial localization
  - I. Paramagnetic
  - m. Diamagnetic
  - n. Super magnetic
  - o. K-space
  - p. Fourier transform, half and partial Fourier
  - q. 2-D/3-D imaging
  - r. Magnetization transfers
  - s. Filming
  - t. Windows and levels
  - u. Region of interest (ROI)
  - v. Annotations
  - w. Remote workstations (imaging manipulation)
- 7. Archiving and data storage
- 8. Examining tissue contrast
- 9. Discussing extrinsic factors

## Learning Outcomes:

- Communicate effectively using listening, speaking, reading, and writing skills
- Use quantitative analytical skills to evaluate and process numerical data
- Solve problems using critical and creative thinking and scientific reasoning
- Formulate strategies to locate, evaluate, and apply information
- Use computer and emerging technologies effectively